Is That an FPGA in Your Embedded System or an Embedded System in My FPGA?

Vin Ratford
Sr. Vice President Worldwide Marketing and Business Development
Agenda

- FPGAs in RT Embedded Systems Today
- A Platform Approach to RTEC
- Future Directions in RTEC
Typical RTEC Applications with FPGAs

- **Aerospace and Defense**
 - Guidance Systems
 - Surveillance and Secure Communications

- **Communications**
 - Baseband Processing

- **Industrial Command & Control**
 - Machine Vision
 - Motor Control

- **Automotive**
 - Driver Assistance
 - Safety
The Supporting Role of FPGAs in RTEC Today

- Delivering Mission Critical Performance
 - Parallel Processing
 - High Bandwidth
 - Low Latency

- High-Speed, Industry Standard Connectivity

- System Integration

- Flexibility
 - Adapts to Varying Market Requirements
Case 1: Automotive Image Processing

Input Image
Pre-Processed Image
Identified Element
Driver Warning

FPGA
Pre-Processing (Pixel Level)
Image Capture, Noise Filtering, Contrast Enhancement, etc.

Discrete DSP
Analytics Processing (Element Level)
Object Detection / Classification, Pattern Recognition, etc.

GPP
Application Processing, System Control
Situational Assessment & Warning Decision, Sensor Control, etc.
Case 2: Traditional 3G Wireless Base Station

- Implement All PHY Functions in FPGA
- Remove DSP
- 2-processor Solution Reduces Cost and Improves Power Efficiency

- Network Processor
 - RLC
 - MAC Scheduling
 - Board Control

- DSP
 - PHY Processing

- FPGA Co-Processor
 - Turbo Decoder
 - DFT, FFT, RACH

- Heavy Lifting Moved to FPGA Co-processor
- Other Functions Remain on the DSP
- 3-processor Solution is Not Cost or Power Efficient
- Data Interface Between DSP and FPGA Becomes an Issue with LTE
Case 3: Video Surveillance for UAV System

- Real-time Image Processing
 - Noise Filtering and Segmentation
 - Motion Detection

- All Processing Performed by a Single FPGA

- DSP Image Processing
- GPP System Management
- Compression Co-processor
- Memory Controller
- Data Transmission
- Secret Sauce
FPGA Implementation Challenges for RTEC Teams

- **Architect**
 - Picking the Right Architecture, Processor
 - HW/SW Partitioning

- **HW Designer**
 - Hand-crafting RTL for Parallel DSP Acceleration
 - IP Availability and Integration from Multiple Sources
 - Cross-domain Development/Debug

- **Software Developer**
 - Waiting for HW Before SW Development
 - Code Optimization
 - HW/SW Co-debug
What’s Needed in Next-Generation RTEC Systems

- Lower System Power
- Higher Performance
- Higher Integration
- Reduced System Cost
- Better Scalability

Better Products

- Plug & Play IP Inter-operability
- Design Re-use
- Ease of Programming
- Extensive Ecosystem

Better Productivity
A Platform Approach to RT Embedded Computing
The Xilinx Vision
Targeted Design Platforms

- Enhanced Ecosystem(s)
- Interchangeable “Socketable IP”
- Unified Open Standard Adoption
- Domain-specific Methodologies
- Targeted Reference Designs

Robust ecosystem delivering a system of interdependent capabilities to solve existing and new challenges
Anatomy of an Embedded Processing Kit

- The Right Processor Architecture
- The Right Interconnect
- Robust Mix of Peripherals and IP
- Familiar Development Environment
 - SOC Development
 - Code Development
 - Debug

- Scalable Base Board with FMC
- Domain Optimized Design Environment
- Targeted Reference Designs
- Documentation, Source Code, and IP Cores
Example: RTC in Industrial Control Systems
Realtime Networking and Machine Vision on the Factory Floor
Example of Industrial Control Design Kit

Enabling RTEC Designers to Innovate Faster…

Platform Elements

Market-specific
- Real-time Ethernet Reference Designs
- Embedded Application Stack
- Real-time Ethernet IP Slave

Domain-specific
- Soft Processor IP
- Software Development Tools
- DSP Development Tools
- Industrial Network Daughter Card
- Ethernet 802.3 Support

Base Platform
- FPGA Device and Base Board
- Hardware Design Tools
- Reference Designs and IP
Example of Single-Chip Crypto (SCC) Design Kit

Platform Elements

Market-Specific
- Isolation Verification Tool
- Secure Design App Notes
- SCC Design Guide
- ISO Flow User Guide
- Partial Reconfiguration Guide
- SCC Verification Services

Domain-Specific
- Embedded Processing Kit
- DSP IP
- Connectivity IP
- Design Planning Tools

Base Platform
- FPGA Device and Base-board
- Hardware Design Tools
Future Directions in RTEC
Partnering with Industry Leaders
ARM and Xilinx Alliance – Oct 2009

- Industry’s Most Popular Embedded Processor & Roadmap
- Optimized Interconnect Standard For FPGAs
 - Next-generation AMBA
- ARM Connected Community and Xilinx Partners
- Robust Ecosystem of Tools, IP and Programmers
- Two Targets:
 - Embedded Processing Domain
 - Programmable Logic Innovation

Microprocessor Forum “Many to Few”
Next-Generation AMBA Innovation

- **Replaces Many Different Interfaces on FPGAs**
 - Delivers Ease of Use and Enables Compatibility
 - Single Industry-standard Interface
 - Only Need to Know One Family of Interfaces, Regardless of Whether They’re Embedded, DSP or Logic Users

- **Choice and Time to Market**
 - Greater Catalog of IP Leads to Faster Time to Market

- **Options to Optimize**
 - Low-latency, Streaming, Light-weight
 - Improved Embedded Performance over Current Interfaces

- **Enables Multiple Use Models:**

 - **Processor Internal**
 - Processor
 - Partner IP
 - Xilinx IP
 - FPGA

 - **Processor External**
 - Xilinx IP
 - Partner IP
 - FPGA

 - **“Processor-less”**
 - Xilinx IP
 - Partner IP
 - FPGA
What the Xilinx/ARM Alliance Will Deliver

- Targeted Design Platforms Based on Leading 32-bit Processor Roadmap
- AMBA Next-generation Interconnect Optimized for FPGA Fabric
 - Improves Fabric Optimization and Performance
 - Enables “Socketable IP”
- ARM Connected Community ↔ Partner Ecosystem
 - Broad IP Catalog
 - Popular RTOSs, Drivers, IDEs

✓ Better RTEC Products
✓ Better Productivity
More Key Developments for RTEC

- Heterogeneous Multiprocessing
- System Power Optimization
- ESL
 - Electronic System Virtualization
 - High-level DSP Synthesis
BDTI Benchmarks of ESL Synthesis for DSP

HLST QoR Is 30x Better Than DSP’s for Our Video Application

Preliminary results for the BDTI Optical Flow Workload, Operating Point 2: maximum frame rate achievable at 720p resolution

![Graph](image1.png)

HLST QoR Is Equivalent to Hand-Written RTL for Our Wireless Application

Preliminary results for the BDTI DQPSK Receiver Workload, 18.75 Msamples second input data with a 75 MHz clock

![Graph](image2.png)

These results are consistent with those reported by HLST users interviewed by BDTI.

Key findings:

- Similar total effort required for DSP and HLST+FPGA implementations
- Different skills required...
The Expanding Role for FPGAs in RTEC

- A Platform Approach will Accelerate Development
- AMBA Interconnect on FPGAs will Enhance the RTEC Landscape and Significantly Grow the Ecosystem
- Future Innovations in ESL and Multicore will Further Increase Productivity
Thank you
Easily Extend Functionality

• Use Base TDP Networking Platform
• Add Imaging Analytics Functionality with Networking
• Bitstream and Bridging Cameralink to IP -
• With FMC for Machine Vision Extension
Other Segment TDPs in Development
LTE eNodeB Targeted Design Platform

Scalable to the Design Platform Requirements